#include #include #include #include #include #include #include #include #include #include #include #include "3darith.h" #include "mathutils.h" #define WINX 400 #define WINY 400 #define MZX 3 #define MZY 3 #define MZZ 3 #define MZWALLS ((MZX*MZY*MZZ*3)-(MZX*MZY)-(MZY*MZZ)-(MZZ*MZX)) #define TEXSIZE 512 #if MZX*MZY*MZZ < 255 typedef unsigned char CELLNO; #elif MZX*MZY*MZZ < 65535 typedef unsigned short int CELLNO; #else typedef unsigned int CELLNO; #endif extern const char *__progname; static Display *disp; static XVisualInfo *vi; static GLXContext ctx; static Screen *scr; static int scrwidth; static int scrheight; static int depth; static Window rootwin; static Colormap cmap; static Window win; static Window pwin; static int peq; static XColor bgcolour; static XColor fgcolour; static GC gc; static struct timeval nexttick; static unsigned int frameus; static struct timeval now; static unsigned int tex; static unsigned char texture[TEXSIZE+2][TEXSIZE+2][4]; /* * It would be conceptually easier to keep this state as the camera's * unit vectors (eg, forward, up, and right) as measured in world * coordinates. However, if we do that, we have to invert a * transformation matrix at rendering time. To make the render-time * operations easy, we have to instead maintain the converse: the * world basis vectors in eye coordinates. These are wx, wy, and wz: * the world x, y, and z unit vectors, in eye coordinates. However, * in order to make motion feasibly simple, we also maintain the * converse: the eye x, y, and z unit vectors in world coordinates. * * We could simply maintain them separately. But then numerical * roundoff errors would cause the two sets, theoretically inverses of * one another, to drift out of sync. So, instead, we depend on * another property: rotation and movement are usually well-separated, * meaning it is feasible to maintain only one of them and invert the * matrix when the other is needed. Since we constantly need wx/wy/wz * for rendering, it is ex/ey/ez that we maintain lazily. evalid is a * boolean indicating whether ex/ey/ez are valid. * * wx/wy/wz and ex/ey/ez represent only rotations. The player's * location in world coordinates is stored in ploc. Like wx/wy/wz, * this is always valid. * * "eye coordinates" are a coordinate system whose Z axis points * opposite the view direction, whose X axis points in the camera's * "right" direction, and whose Y axis points in the camera's "up" * direction. The Z axis is negated from the obvious convention * because that's required by the combination of two other useful * properties: (1) eye X and Y coordinates are "the same as" (parallel * to and same sign as) screen X and Y coordinates and (2) the eye * coordinate system obeys the same right-hand rule as the world * coordinate system. */ static XYZ wx; static XYZ wy; static XYZ wz; static XYZ ploc; static int evalid; static XYZ ex; static XYZ ey; static XYZ ez; static unsigned int kbstate; #define KBS_ML 0x00000001 #define KBS_MR 0x00000002 #define KBS_MU 0x00000004 #define KBS_MD 0x00000008 #define KBS_MF 0x00000010 #define KBS_MB 0x00000020 #define KBS_RL 0x00000040 #define KBS_RR 0x00000080 #define KBS_RU 0x00000100 #define KBS_RD 0x00000200 #define KBS_RCW 0x00000400 #define KBS_RCCW 0x00000800 #define KBS_LSHF 0x00001000 #define KBS_RSHF 0x00002000 #define KBS_LCTL 0x00004000 #define KBS_RCTL 0x00008000 #define KBS_SHIFT (KBS_LSHF|KBS_RSHF) #define KBS_CTRL (KBS_LCTL|KBS_RCTL) static int dbg; static int swapped; typedef unsigned char MZBITS; static MZBITS maze[MZX][MZY][MZZ]; #define MZ_PX 0x01 #define MZ_MX 0x02 #define MZ_PY 0x04 #define MZ_MY 0x08 #define MZ_PZ 0x10 #define MZ_MZ 0x20 #define MZ_S 0x40 #define MZ_G 0x80 static unsigned int ticks; static GLuint mazelist; static XYZI mzs; static XYZI mzg; static void open_display(void) { disp = XOpenDisplay(0); if (disp == 0) { fprintf(stderr,"%s: can't open display\n",__progname); exit(1); } } static void find_visual(void) { XVisualInfo template; int nvi; template.visualid = 35; vi = XGetVisualInfo(disp,VisualIDMask,&template,&nvi); if (nvi < 1) { fprintf(stderr,"%s: can't find visual\n",__progname); exit(1); } if (nvi > 1) { fprintf(stderr,"%s: found multiple visuals\n",__progname); exit(1); } } static void setup_X(void) { Pixmap p; scr = XScreenOfDisplay(disp,vi->screen); scrwidth = XWidthOfScreen(scr); scrheight = XHeightOfScreen(scr); depth = vi->depth; rootwin = XRootWindowOfScreen(scr); cmap = XCreateColormap(disp,rootwin,vi->visual,AllocNone); XParseColor(disp,cmap,"#646",&bgcolour); XAllocColor(disp,cmap,&bgcolour); XParseColor(disp,cmap,"#fff",&fgcolour); XAllocColor(disp,cmap,&fgcolour); p = XCreatePixmap(disp,rootwin,1,1,depth); gc = XCreateGC(disp,p,0,0); XFreePixmap(disp,p); } static void setup_context(void) { ctx = glXCreateContext(disp,vi,0,True); if (! ctx) { fprintf(stderr,"%s: can't create GL context\n",__progname); exit(1); } } static int clip(int, int, int) __attribute__((__const__)); static int clip(int v, int min, int max) { return((vmax)?max:v); } static void setup_bitmaps(void) { int x; int y; double d; for (x=TEXSIZE+2-1;x>=0;x--) { for (y=TEXSIZE+2-1;y>=0;y--) { d = hypot(x-((TEXSIZE+2-1)/2.0),y-((TEXSIZE+2-1)/2.0)); if (d >= TEXSIZE/2.0) { texture[y][x][0] = 127; texture[y][x][1] = 127; texture[y][x][2] = 127; texture[y][x][3] = 255; } else { d = (d * 3) / (TEXSIZE/2.0); texture[y][x][0] = clip((d<1)?d*256:0,0,255); texture[y][x][1] = clip(((d>=1)&&(d<2))?(d-1)*256:0,0,255); texture[y][x][2] = clip((d>=2)?(d-2)*256:0,0,255); texture[y][x][3] = 255; } } } } static void create_window(void) { XSetWindowAttributes attr; unsigned long int attrmask; attrmask = 0; attr.background_pixel = bgcolour.pixel; attrmask |= CWBackPixel; attr.event_mask = StructureNotifyMask | VisibilityChangeMask | KeyPressMask | KeyReleaseMask; attrmask |= CWEventMask; attr.colormap = cmap; attrmask |= CWColormap; win = XCreateWindow(disp,rootwin,0,0,WINX,WINY,0,depth,InputOutput,vi->visual,attrmask,&attr); XMapRaised(disp,win); attrmask = 0; attr.event_mask = PropertyChangeMask; attrmask |= CWEventMask; pwin = XCreateWindow(disp,win,-1,-1,1,1,0,0,InputOnly,vi->visual,attrmask,&attr); peq = 0; } static void setup_gl(void) { double ps[4] = { .1, 0, 0, 0 }; double pt[4] = { 0, .1, 0, 0 }; if (glXMakeCurrent(disp,(GLXDrawable)win,ctx) != True) { fprintf(stderr,"%s: can't make context current\n",__progname); exit(1); } glShadeModel(GL_SMOOTH); glClearColor(0,0,0,0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glFrustum(-.25,.25,-.25,.25,.25,(hypot(hypot(MZX,MZY),MZZ)+1)*10); glMatrixMode(GL_MODELVIEW); glEnable(GL_DEPTH_TEST); glEnable(GL_POLYGON_OFFSET_FILL); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glGenTextures(1,&tex); glBindTexture(GL_TEXTURE_2D,tex); glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_DECAL); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_CLAMP); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_CLAMP); glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,TEXSIZE+2,TEXSIZE+2,1,GL_RGBA,GL_UNSIGNED_BYTE,&texture[0][0][0]); glTexGeni(GL_S,GL_TEXTURE_GEN_MODE,GL_EYE_LINEAR); glTexGeni(GL_T,GL_TEXTURE_GEN_MODE,GL_EYE_LINEAR); glTexGendv(GL_S,GL_EYE_PLANE,&ps[0]); glTexGendv(GL_T,GL_EYE_PLANE,&pt[0]); glCullFace(GL_BACK); glFrontFace(GL_CW); glEnable(GL_CULL_FACE); kbstate = 0; } static const char *maze_bit_name(MZBITS) __attribute__((__unused__)); static const char *maze_bit_name(MZBITS bit) { switch (bit) { case MZ_PX: return("PX"); break; case MZ_MX: return("MX"); break; case MZ_PY: return("PY"); break; case MZ_MY: return("MY"); break; case MZ_PZ: return("PZ"); break; case MZ_MZ: return("MZ"); break; case MZ_S: return("S"); break; case MZ_G: return("G"); break; } return("?"); } static void setup_model(void) { typedef struct { unsigned char x; unsigned char y; unsigned char z; MZBITS bit; } WALL; WALL walls[MZWALLS]; CELLNO cells[MZX][MZY][MZZ]; int x; int y; int z; int nw; int zc; int wx; WALL w; int c; int openit; MZBITS obit; int done(void) { int i; int j; int k; if (zc > 0) return(0); for (i=MZX-1;i>=0;i--) for (j=MZY-1;j>=0;j--) for (k=MZZ-1;k>=0;k--) if (cells[i][j][k] != 1) return(0); return(1); } void renumber(CELLNO a, CELLNO b) { int i; int j; int k; if (b < a) { CELLNO t; t = a; a = b; b = t; } for (i=MZX-1;i>=0;i--) for (j=MZY-1;j>=0;j--) for (k=MZZ-1;k>=0;k--) if (cells[i][j][k] == b) cells[i][j][k] = a; } srandom(time(0)); nw = 0; for (x=MZX-1;x>=0;x--) for (y=MZY-1;y>=0;y--) for (z=MZZ-1;z>=0;z--) { cells[x][y][z] = 0; if (x > 0) walls[nw++] = (WALL){.x=x,.y=y,.z=z,.bit=MZ_MX}; if (y > 0) walls[nw++] = (WALL){.x=x,.y=y,.z=z,.bit=MZ_MY}; if (z > 0) walls[nw++] = (WALL){.x=x,.y=y,.z=z,.bit=MZ_MZ}; } if (nw != MZWALLS) abort(); zc = MZX * MZY * MZZ; c = 1; while (! done()) { wx = random() % nw; w = walls[wx]; nw --; if (wx < nw) walls[wx] = walls[nw]; switch (w.bit) { case MZ_MX: x = w.x - 1; y = w.y; z = w.z; obit = MZ_PX; break; case MZ_MY: x = w.x; y = w.y - 1; z = w.z; obit = MZ_PY; break; case MZ_MZ: x = w.x; y = w.y; z = w.z - 1; obit = MZ_PZ; break; default: abort(); break; } openit = 1; if (cells[w.x][w.y][w.z]) { if (cells[x][y][z]) { if (cells[x][y][z] == cells[w.x][w.y][w.z]) { openit = 0; } else { renumber(cells[w.x][w.y][w.z],cells[x][y][z]); } } else { cells[x][y][z] = cells[w.x][w.y][w.z]; zc --; } } else { if (cells[x][y][z]) { cells[w.x][w.y][w.z] = cells[x][y][z]; zc --; } else { cells[x][y][z] = c; cells[w.x][w.y][w.z] = c; c ++; zc -= 2; } } if (openit) { maze[w.x][w.y][w.z] |= w.bit; maze[x][y][z] |= obit; } } maze[0][0][0] |= MZ_S; maze[MZX-1][MZY-1][MZZ-1] |= MZ_G; { int walk(int x, int y, int z) { if (! cells[x][y][z]) { cells[x][y][z] = 1; if ( (maze[x][y][z] & MZ_G) || ((maze[x][y][z] & MZ_PX) && walk(x+1,y,z)) || ((maze[x][y][z] & MZ_MX) && walk(x-1,y,z)) || ((maze[x][y][z] & MZ_PY) && walk(x,y+1,z)) || ((maze[x][y][z] & MZ_MY) && walk(x,y-1,z)) || ((maze[x][y][z] & MZ_PZ) && walk(x,y,z+1)) || ((maze[x][y][z] & MZ_MZ) && walk(x,y,z-1)) ) { cells[x][y][z] = 2; return(1); } } return(0); } for (x=MZX-1;x>=0;x--) for (y=MZY-1;y>=0;y--) for (z=MZZ-1;z>=0;z--) cells[x][y][z] = 0; walk(0,0,0); } for (x=MZX-1;x>=0;x--) for (y=MZY-1;y>=0;y--) for (z=MZZ-1;z>=0;z--) { if ( ( (x > 0) && ( ( (maze[x-1][y][z] & MZ_PX) && !(maze[x][y][z] & MZ_MX) ) || ( !(maze[x-1][y][z] & MZ_PX) && (maze[x][y][z] & MZ_MX) ) ) ) || ( (y > 0) && ( ( (maze[x][y-1][z] & MZ_PY) && !(maze[x][y][z] & MZ_MY) ) || ( !(maze[x][y-1][z] & MZ_PY) && (maze[x][y][z] & MZ_MY) ) ) ) || ( (z > 0) && ( ( (maze[x][y][z-1] & MZ_PZ) && !(maze[x][y][z] & MZ_MZ) ) || ( !(maze[x][y][z-1] & MZ_PZ) && (maze[x][y][z] & MZ_MZ) ) ) ) ) abort(); } for (z=MZZ-1;z>=0;z--) { printf("\n"); for (x=MZX;x>0;x--) printf("+---"); printf("+\n"); for (y=MZY-1;y>=0;y--) { for (x=0;x= 500000) { glColor3f(.333,0,.333); } else { glColor3f(1,1,.333); } draw_box( (XYZI){mzg.x+5,mzg.y+5,mzg.z+5}, (XYZI){mzg.x+6,mzg.y+6,mzg.z+6} ); } static void render(void) { glViewport(0,0,WINX,WINY); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glLoadIdentity(); glViewport(0,0,WINX,WINY); drawstuff(); glXSwapBuffers(disp,win); glXWaitGL(); glXWaitX(); while (peq > 0) { XEvent e; XWindowEvent(disp,pwin,PropertyChangeMask,&e); peq --; } XChangeProperty(disp,pwin,XA_STRING,XA_STRING,8,PropModeAppend,"",0); peq ++; } static void setup_ticks(void) { gettimeofday(&nexttick,0); frameus = 10000; ticks = 0; } static void rotate_world(double a, XYZ axis) { wx = xyzunit(xyzrotate(wx,a,axis)); wy = xyzunit(subtract_component(xyzrotate(wy,a,axis),wx)); wz = xyzunit(subtract_component(subtract_component(xyzrotate(wz,a,axis),wx),wy)); evalid = 0; } /* * We basically have to invert the matrix * * [ rx.x ry.x rz.x ] * [ rx.y ry.y rz.y ] * [ rx.z ry.z rz.z ] * * Fortunately, because it's a rotation matrix, it's about as far from * singular as can be; its determinant is theoretically exactly 1. * * The closed-form inverse of * * [ A B C ] * [ D E F ] * [ G H I ] * * is * * [ EI-FH CH-BI BF-CE ] / * [ FG-DI AI-CG CD-AF ] / AEI+BFG+CDH-AFH-BDI-CEG * [ DH-EG BG-AH AE-BD ] / * * We save some multiplications by writing the determinant as * A(EI-FH)+B(FG-DI)+C(DH-EG), for 9 multiplies and 5 adds, versus the * above, which is 12 multiplies and 5 adds. */ static void invert_rotations(XYZ rx, XYZ ry, XYZ rz, XYZ *ix, XYZ *iy, XYZ *iz) { double det; det = (rx.x * ((ry.y * rz.z) - (rz.y * ry.z))) + (ry.x * ((rz.y * rx.z) - (rx.y * rz.z))) + (rz.x * ((rx.y * ry.z) - (ry.y * rx.z))); *ix = (XYZ) { ((ry.y * rz.z) - (rz.y * ry.z)) / det, ((rz.y * rx.z) - (rx.y * rz.z)) / det, ((rx.y * ry.z) - (ry.y * rx.z)) / det }; *iy = (XYZ) { ((rz.x * ry.z) - (ry.x * rz.z)) / det, ((rx.x * rz.z) - (rz.x * rx.z)) / det, ((ry.x * rx.z) - (rx.x * ry.z)) / det }; *iz = (XYZ) { ((ry.x * rz.y) - (rz.x * ry.y)) / det, ((rz.x * rx.y) - (rx.x * rz.y)) / det, ((rx.x * ry.y) - (ry.x * rx.y)) / det }; } static void ensure_e(void) { if (evalid) return; invert_rotations(wx,wy,wz,&ex,&ey,&ez); evalid = 1; } static void moveby(XYZ dir, double s) { XYZ nploc; int x; int y; int z; unsigned char bits; double px; double py; double d; nploc = xyzadd(ploc,xyzscale(dir,s*.1)); x = (nploc.x - .5) / 10; y = (nploc.y - .5) / 10; z = (nploc.z - .5) / 10; if (x < 0) x = 0; else if (x >= MZX) x = MZX - 1; if (y < 0) y = 0; else if (y >= MZY) y = MZY - 1; if (z < 0) z = 0; else if (z >= MZZ) z = MZZ - 1; bits = maze[x][y][z]; x *= 10; y *= 10; z *= 10; if (!(bits & MZ_PX) && (nploc.x > x+9)) nploc.x = x + 9; if (!(bits & MZ_MX) && (nploc.x < x+2)) nploc.x = x + 2; if (!(bits & MZ_PY) && (nploc.y > y+9)) nploc.y = y + 9; if (!(bits & MZ_MY) && (nploc.y < y+2)) nploc.y = y + 2; if (!(bits & MZ_PZ) && (nploc.z > z+9)) nploc.z = z + 9; if (!(bits & MZ_MZ) && (nploc.z < z+2)) nploc.z = z + 2; #if 0 if (nploc.x < x+5) px = x + .5; else px = x + 10.5; if (nploc.y < y+5) py = y + .5; else py = y + 10.5; if (nploc.z < z+5) pz = z + .5; else pz = z + 10.5; if ((fabs(nploc.x-px) <= 1.5) && (fabs(nploc.y-py) <= 1.5)) { if (fabs(nploc.x-px) <= .5) { if ((nploc.y > py) && (nploc.y < py+1.5)) nploc.y = py + 1.5; else if ((nploc.y < py) && (nploc.y > py-1.5)) nploc.y = py - 1.5; } else if (fabs(nploc.y-py) <= .5) { if ((nploc.x > px) && (nploc.x < px+1.5)) nploc.x = px + 1.5; else if ((nploc.x < px) && (nploc.x > px-1.5)) nploc.x = px - 1.5; } else { if (nploc.x < px) px -= .5; else px += .5; if (nploc.y < py) py -= .5; else py += .5; d = hypot(px-nploc.x,py-nploc.y); if (d < 1) { nploc.x = px - ((px - nploc.x) / d); nploc.y = py - ((py - nploc.y) / d); } } } #else d=0;px=0;py=0; #endif ploc = nploc; } static void motion(void) { double f; if (kbstate & KBS_SHIFT) f = 25; else if (kbstate & KBS_CTRL) f = 1; else f = 5; f *= .3; switch (kbstate & (KBS_ML|KBS_MR)) { case KBS_ML: ensure_e(); moveby(ex,-f); break; case KBS_MR: ensure_e(); moveby(ex,f); break; } switch (kbstate & (KBS_MU|KBS_MD)) { case KBS_MU: ensure_e(); moveby(ey,f); break; case KBS_MD: ensure_e(); moveby(ey,-f); break; } switch (kbstate & (KBS_MF|KBS_MB)) { case KBS_MF: ensure_e(); moveby(ez,-f); break; case KBS_MB: ensure_e(); moveby(ez,f); break; } switch (kbstate & (KBS_RL|KBS_RR)) { case KBS_RL: rotate_world(-f,(XYZ){0,1,0}); break; case KBS_RR: rotate_world(f,(XYZ){0,1,0}); break; } switch (kbstate & (KBS_RU|KBS_RD)) { case KBS_RU: rotate_world(-f,(XYZ){1,0,0}); break; case KBS_RD: rotate_world(f,(XYZ){1,0,0}); break; } switch (kbstate & (KBS_RCW|KBS_RCCW)) { case KBS_RCW: rotate_world(-f,(XYZ){0,0,1}); break; case KBS_RCCW: rotate_world(f,(XYZ){0,0,1}); break; } } static void keystroke(XKeyEvent *ev, char updn) { KeySym ks; unsigned int bit; ks = XLookupKeysym(ev,0); bit = 0; switch (ks) { case XK_w: case XK_W: bit = KBS_MU; break; case XK_s: case XK_S: bit = KBS_MD; break; case XK_a: case XK_A: bit = KBS_ML; break; case XK_d: case XK_D: bit = KBS_MR; break; case XK_r: case XK_R: bit = KBS_MF; break; case XK_f: case XK_F: bit = KBS_MB; break; case XK_i: case XK_I: bit = KBS_RU; break; case XK_k: case XK_K: bit = KBS_RD; break; case XK_j: case XK_J: bit = KBS_RL; break; case XK_l: case XK_L: bit = KBS_RR; break; case XK_u: case XK_U: bit = KBS_RCCW; break; case XK_o: case XK_O: bit = KBS_RCW; break; case XK_Shift_L: bit = KBS_LSHF; break; case XK_Shift_R: bit = KBS_RSHF; break; case XK_Control_L: bit = KBS_LCTL; break; case XK_Control_R: bit = KBS_RCTL; break; case XK_x: case XK_X: if (updn == 'd') swapped = ! swapped; break; case XK_q: case XK_Q: if ((updn == 'u') && (kbstate & KBS_SHIFT)) exit(0); break; case XK_1: if (updn == 'd') dbg = 1; break; } switch (updn) { case 'u': kbstate &= ~bit; break; case 'd': kbstate |= bit; break; default: abort(); break; } } static void events(void) { XEvent ev; while (XPending(disp)) { XNextEvent(disp,&ev); switch (ev.type) { default: /* XXX ignore */ break; case KeyPress: /* XKeyPressedEvent - XKeyEvent - xkey */ keystroke(&ev.xkey,'d'); break; case KeyRelease: /* XKeyReleasedEvent - XKeyEvent - xkey */ keystroke(&ev.xkey,'u'); break; case MappingNotify: /* XMappingEvent - xmapping */ XRefreshKeyboardMapping(&ev.xmapping); break; case PropertyNotify: /* XPropertyEvent - xproperty */ if (ev.xproperty.window == pwin) peq --; break; } } } static void await(void) { int ms; nexttick.tv_usec += frameus; if (nexttick.tv_usec >= 1000000) { nexttick.tv_usec -= 1000000; nexttick.tv_sec ++; } gettimeofday(&now,0); if ( (now.tv_sec > nexttick.tv_sec) || ( (now.tv_sec == nexttick.tv_sec) && (now.tv_usec >= nexttick.tv_usec) ) ) { frameus += 10000; nexttick = now; return; } ms = ((nexttick.tv_sec - now.tv_sec) * 1000) + 1 + (nexttick.tv_usec / 1000) - (now.tv_usec / 1000); if (ms < 20) { frameus += 10000; } else { frameus -= 10; } if (ms < 1) ms = 1; poll(0,0,ms); gettimeofday(&now,0); } static void tick(void) { motion(); render(); events(); await(); ticks ++; } static void setup_view(void) { ploc = (XYZ){3,3,3}; ez = xyzunit((XYZ){-1,-1,0}); ey = xyzunit(subtract_component((XYZ){0,0,1},ez)); ex = xyzcross(ey,ez); invert_rotations(ex,ey,ez,&wx,&wy,&wz); evalid = 1; swapped = 0; } static void setup_input(void) { XGrabKeyboard(disp,win,False,GrabModeAsync,GrabModeAsync,CurrentTime); } static void draw_wall(XYZI p0, XYZI u, XYZI r) { glTexCoord2d(0,0); glVertex3d(p0.x,p0.y,p0.z); glTexCoord2d(0,1); glVertex3d(p0.x+u.x,p0.y+u.y,p0.z+u.z); glTexCoord2d(1,1); glVertex3d(p0.x+u.x+r.x,p0.y+u.y+r.y,p0.z+u.z+r.z); glTexCoord2d(1,0); glVertex3d(p0.x+r.x,p0.y+r.y,p0.z+r.z); } static void setup_lists(void) { int x; int y; int z; mazelist = glGenLists(1); glNewList(mazelist,GL_COMPILE); glPolygonOffset(0,1); mzs.x = -1; mzg.x = -1; /* walls */ glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D,tex); glBegin(GL_QUADS); for (x=MZX-1;x>=0;x--) for (y=MZY-1;y>=0;y--) for (z=MZZ-1;z>=0;z--) { if (! (maze[x][y][z] & MZ_PX)) { draw_wall( (XYZI){(x+1)*10,(y*10)+1,(z*10)+1}, (XYZI){0,9,0}, (XYZI){0,0,9} ); } if (! (maze[x][y][z] & MZ_MX)) { draw_wall( (XYZI){(x*10)+1,(y*10)+1,(z*10)+1}, (XYZI){0,0,9}, (XYZI){0,9,0} ); } if (! (maze[x][y][z] & MZ_PY)) { draw_wall( (XYZI){(x*10)+1,(y+1)*10,(z*10)+1}, (XYZI){0,0,9}, (XYZI){9,0,0} ); } if (! (maze[x][y][z] & MZ_MY)) { draw_wall( (XYZI){(x*10)+1,(y*10)+1,(z*10)+1}, (XYZI){9,0,0}, (XYZI){0,0,9} ); } if (! (maze[x][y][z] & MZ_PZ)) { draw_wall( (XYZI){(x*10)+1,(y*10)+1,(z+1)*10}, (XYZI){9,0,0}, (XYZI){0,9,0} ); } if (! (maze[x][y][z] & MZ_MZ)) { draw_wall( (XYZI){(x*10)+1,(y*10)+1,(z*10)+1}, (XYZI){0,9,0}, (XYZI){9,0,0} ); } if (maze[x][y][z] & MZ_S) mzs = (XYZI){x*10,y*10,z*10}; if (maze[x][y][z] & MZ_G) mzg = (XYZI){x*10,y*10,z*10}; } glEnd(); glDisable(GL_TEXTURE_2D); /* start marker */ if (mzs.x < 0) abort(); glColor3f(.333,.333,.667); draw_box( (XYZI){mzs.x+5,mzs.y+5,mzs.z+5}, (XYZI){mzs.x+6,mzs.y+6,mzs.z+6} ); /* goal marker is done dynamically, so it can flash */ if (mzg.x < 0) abort(); /* "structural" skeleton */ for (x=MZX;x>=0;x--) for (y=MZY;y>=0;y--) for (z=MZZ;z>=0;z--) { glColor3f(.5,.5,.5); draw_box( (XYZI){x*10,y*10,z*10}, (XYZI){(x*10)+1,(y*10)+1,(z*10)+1} ); if (x < MZX) { glColor3f(.75,.3,.3); draw_box( (XYZI){(x*10)+1,y*10,z*10}, (XYZI){(x+1)*10,(y*10)+1,(z*10)+1} ); } if (y < MZY) { glColor3f(.3,.75,.3); draw_box( (XYZI){x*10,(y*10)+1,z*10}, (XYZI){(x*10)+1,(y+1)*10,(z*10)+1} ); } if (z < MZZ) { glColor3f(.3,.3,.75); draw_box( (XYZI){x*10,y*10,(z*10)+1}, (XYZI){(x*10)+1,(y*10)+1,(z+1)*10} ); } } glEndList(); } int main(void); int main(void) { open_display(); find_visual(); setup_X(); setup_context(); setup_bitmaps(); create_window(); setup_gl(); setup_input(); setup_model(); setup_view(); setup_ticks(); setup_lists(); while (1) tick(); }