This file contains some manually-obtained results, including manually-designed algorithms for a few cases. All algorithms herein have an implicit "if the bell doesn't ring" attached to each step. Because any algorithm can be expressed in this fashion, if there is no algorithm of this sort, there is no algorithm at all. Thus, if the program says no algorithm was found, no algorithm exists unless it's buggy. W prime >3 and 2<=H<=W-2 suspected impossible. Not "W odd >3 and 2<=H<=W-2"; W=9 H=7 is a counterexample. W>2 H=W-1 borders on trivial. W=2 H=1 - trivial. W>2 H=1 - easily proved impossible. (It is possible for every spin to cause the single probe to miss the same two wells, which can be different.) Conjecture: W=w H6, H=W-2; see 8/6 and 10/8 for examples. W=7 H=2 - impossible, basically same proof as W=6 H=3 3 patterns: XX----- X-X---- X--X--- W=7 H=3 - impossible, basically same proof as W=6 H=3 5 patterns: XXX---- XX-X--- XX--X-- XX---X- X-X-X-- W=7 H=4-5 - manually suspected impossible, confirmed by program W=8 H=2 - impossible; 8/3 is impossible W=8 H=3 - imposible, basically same proof as W=6 H=3 7 patterns: XXX----- XX-X---- XX--X--- XX---X-- XX----X- X-X-X--- X-X--X-- W=8 H=4 - possible 10 patterns: XXXX---- XXX-X--- XXX--X-- XXX---X- XX-XX--- XX-X-X-- XX-X--X- XX--XX-- XX--X-X- X-X-X-X- No algorithm known except for decision tree from program. This is bzip2 | btoa on that: xbtoa Begin 6<\%_0gSqh;ctkF,TZq!`*7b:&3pn9n,P^'%B2;Jloh;bACDE(<[]`up9uI%0($cg\Z"i;X3Ye6rpHK3D&OmrWE$XQB =s"R;1)2mdJd#C*HJl^f!O77PN13TS/r`/oq%Q'c4(6o.,C3H4^dd*HST/MY>Y,-ledW%o:; an]hj44er3ak;bKaZQ!0ON6RJg@`ABb-04FHQ9c5Y7_dSpE<_)=&^.KI^G\Ld7.jfuDW0R8% 0jLdq4(5D&b3a*7=et+>kVf!W;aWt=[):tZgNDU(&7h"r1:(hqW,ABJMm7-Kk3!bU[9]nY6& TF)$mO4N[[a+km:ta%>_[ucQ"@f=n[7ben7)LbHf"G/^#^t*#t:-El]@81+d+^kZC4?Ybqpn ^0N(kZ_"sQ6"g^QSWkX.S=Lhba+&1c1N:gJeR#;OPqh[e;D=,mCoU9NVbu7h(?IQ2%0%[PFl t">pD.+0A9VhreT3I/25$bKt6A.iM.c*eZHfbgqdN6%I$>?0t%iZHpf!$/U3\p%FKh9"J qh23hUh'qPCOU"?J]Pk_5!>8Ec:Er;!H+/A_"VkO&^Wpt]JU1Kih.n]_RF!^.+9 3Q3.\6XF.\A`$`dl,_G[N0&4oldT\]Im@SG,IC4DfVl:7uC\u6)"e>P^Ab5oIo8]$pIjs._c <4F>ZuCr8Y@L3iVin43a`[?-$P<]>E%0gIuG-fk0_tD72!;o'.8r3%jQaH!*9$ERZiue3/HY BCRZ)pIM@T8Y^l.k6I*/X7T@biWQ>L)i=^d%o)2N+Qdk"CoV.C@.gK<2 9`am.7BShQP7L:K<25=mleJP;0'\:]L["sQB9kc@e8Yi@X,a3%RM]5'#@qmht)PW1#D82cg, ZBC'"!h>AhuE`W xbtoa End N 1045 415 E af S 20e35 R 6f455144 W=8 H=5 - possible 7 patterns: XXXXX--- XXXX-X-- XXXX--X- XXX-XX-- XXX-X-X- XXX--XX- XX-XX-X- No algorithm known except for decision tree from program. This is bzip2 | btoa on that: xbtoa Begin 6<\%_0gSqh;cu3rV[rhB@p=J.&3pnYn,P^LccG8Vus0k&<;hY._ 2hHM$q%H':?jku@Z,<_YEGh#g)q$o"rL1n(I/&?[l>dXfE71n\bX%;<+kVO.fL_i;*qD!S[] *R.Hl7Q'!]aC:RY]2s+!_s)MiUTHRS16C6]@LE"gYEMV^7bH+**NaAM\ZU'iEpIki8QIDF'& 's?g,iSZZ'BFs\n!i1USP@TCSRH.+XPUO?LK1&]=#7kAn#&PTqf3c9Zgf"\RmZQI%6?4k3W1 *(L=(YE?V,o)DOpI_$M7b&&H1U"I6+cV,Ia,`Ha<#RI.TU`-0r(gQgNj->(\@IJq%VCL!oaD HFg!]hNJUj$u/]jj.i_tl!BasnM.LNlaj]V[;=nB*l(U:NRtc'o"1_[ DWSJjf;i68&qjQB1LCtsM]8O&p@DP@\$'nCP$0-QBqeI1VFW6Q)>*A#"kGV(FW,@lmm8^"1F \M?l^]u1^3<8J>2N$<4);?Vh7B]5/sf5ECYf2V,e`YOg=2^3>IN,C]3B<$$bSJm];rPr[^B8 4&ieY2Rs8YKoH9lZW=6]"K;Zm-a $h(gqt2kH!CChbJRe)'m'mREmD>U!UTeXs-I]R>eh,]+d"57N%.epOi/7C3pW!ZY``RHh>MA [p*X]UU+?RBR2_t##80#]WL8J^mSfXj'&d5fi?3Rp(VRURI"eYfu&A':c+hVH%uj>)lOgBYI [h,k@6*p]82KJ\?MHbIDPn$ub?C*O]3a%EM7L`]aWVc<59;H%&r1Z dHb6fP<_2o=h&Y6ea"sIWZ"iZLme=EG]9+j A4'r;#O8oB?-WD7OEY+W_/_1MoF7Mmp1BsD,YCr8uA@9P*.Z*ICgA=+!'_Ea8-P*l@ubXQ28 R^'77Rps;NN@'IsKrf-#W7j,'W6&/m9$+)-YZ=CpA?#cq9M(ts(tKr^$8H?c#,2CS1_FP$MD h[;0'%n/TceS-:*9N: xbtoa End N 1222 4c6 E 4d S 26ee7 R 884802bf W=8 H=6 - possible; generalization of W=6 H=4 XXXXXX--: all down XXXXX-X-: all down (Now have *-------) XXX-XXX-: if any u, invert it, ring if not, invert ***.---. (Now have ****----) XXXXXX--: four u, invert them, ring four d, invert them, ring else, invert *-**-*.. XXXXX-X-: invert *-*-*.*., ring W=9 H=2 - impossible; 9/3 is impossible W=9 H=3 - impossible; 9/4 is impossible W=9 H=4 - impossible; 9/5 is impossible W=9 H=5 - impossible, basically same proof as W=6 H=3, but with *--*----- as the relevant pattern instead of *-*---. 14 patterns: XXXXX---- XXXX-X--- XXXX--X-- XXXX---X- XXX-XX--- XXX-X-X-- XXX-X--X- XXX--XX-- XXX--X-X- XXX---XX- XX-XX-X-- XX-XX--X- XX-X-XX-- XX-X-X-X- W=9 H=6 - unsure 10 patterns: XXXXXX--- XXXXX-X-- XXXXX--X- XXXX-XX-- XXXX-X-X- XXXX--XX- XXX-XXX-- XXX-XX-X- XXX-X-XX- XX-XX-XX- W=9 H=7 - possible 4 patterns: XXXXXXX-- XXXXXX-X- XXXXX-XX- XXXX-XXX- XXXXXXX--: all down XXXXXX-X-: all down (Now have *--------) XXXXXX-X-: one u, invert it, ring no u: invert -------*- (Now have **-------) XXXX-XXX-: two u: invert them, ring *---.---.: invert *-*-.*--. ---*.---.: invert -*-*.--*. ----.*--.: invert -*--.*-*. ----.--*.: invert --*-.*-*. (Now have *--*--*--) XXXXX-XX-: if three u, invert them, ring else invert all d, ring W=10 H=2 - impossible; 10/3 is impossible W=10 H=3 - impossible; 10/4 is impossible W=10 H=4 - impossible; 10/5 is impossible W=10 H=5 - impossible, basically same proof as W=6 H=3 26 patterns: XXXXX----- XXXX-X---- XXXX--X--- XXXX---X-- XXXX----X- XXX-XX---- XXX-X-X--- XXX-X--X-- XXX-X---X- XXX--XX--- XXX--X-X-- XXX--X--X- XXX---XX-- XXX---X-X- XXX----XX- XX-XX-X--- XX-XX--X-- XX-XX---X- XX-X-XX--- XX-X-X-X-- XX-X-X--X- XX-X--XX-- XX-X--X-X- XX--XX--X- XX--X-X-X- X-X-X-X-X- W=10 H=6 - unsure 22 patterns: XXXXXX---- XXXXX-X--- XXXXX--X-- XXXXX---X- XXXX-XX--- XXXX-X-X-- XXXX-X--X- XXXX--XX-- XXXX--X-X- XXXX---XX- XXX-XXX--- XXX-XX-X-- XXX-XX--X- XXX-X-XX-- XXX-X-X-X- XXX-X--XX- XXX--XXX-- XXX--XX-X- XXX--X-XX- XX-XX-XX-- XX-XX-X-X- XX-X-XX-X- W=10 H=7 - unsure 12 patterns: XXXXXXX--- XXXXXX-X-- XXXXXX--X- XXXXX-XX-- XXXXX-X-X- XXXXX--XX- XXXX-XXX-- XXXX-XX-X- XXXX-X-XX- XXXX--XXX- XXX-XXX-X- XXX-XX-XX- W=10 H=8 - possible, generalization of W=6 H=4 XXXXXXXX--: all down XXXXXXX-X-: all down (Now have *-------) XXXX-XXXX-: if any u, invert it, ring if not, invert ****.----. (Now have *****-----) XXXXXXXX--: five u, invert them, ring five d, invert them, ring else, invert *-*--*-*.. XXXXX-X-: invert *-*-*.*., ring Also interesting is what patterns are at depth 1, that is, what sets are one step from a guaranteed bell ring. Obviously, this makes sense for only the solvable problems. All such sets so far are of size one. These all seem to be related to the factors of W, reinforcing the idea that W=prime>3 2<=H<=W-2 is impossible. W=4 H=2: *-*- W=6 H=4: **-**- *-*-*- *--*-- W=8 H=4: *-*-*- W=8 H=5: *-*-*- W=8 H=6: ***-***- *--*-- *-*-*- **--**-- W=9 H=7: **-**-**- *--*--*--